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TECHNICAL SUMMARY

Our research concentrated on the following topics:

$'Special Relations in Automated Deduction ([MW1I)

Theorem provers have exhibited super-human abilities in limited, obscure subject domains
but seem least competent in areas in which human intuition is best developed. One reason for this
is that an axiomatic formalization requires us to state explicitly facts that a person dealing in a
familiar subject would consider too obvious to mention; the proof must take each of these facts into
account explicitly. A person who is easily able to construct an argument informally may be too
swamped in detail to understand, let alone produce, the corresponding formal pioof. A continuing
effort in our research is to make formal theorem proving more closely resemble intuitive reasoning.
One case in point is our treatment of special relations.

In most proofs of interest for program synthesis, certain mathematical relations, such as equal-
ity and orderings, present special difficulties. These relations occur frequently in specifications and
in derivation of proofs. If their properties are represented axiomatically, proofs become lengthy,
difficult to understand, and even more difficult to produce or discover automatically. Axioms such
as transitivity have many consequences, most of which are irrelevant to the proof; including them
produces an explosion in the search space.

For the equality relation, the approach that was adopted early on is to represent its-properties
with rules of inference rather than axioms. In resolution systems, two rules of inference, paramod-
ulation (Wos and Robinson) and E-resolution (Morris), were introduced. Proofs using these rules
are shorter and clearer, because one application of a rule can replace the application of several
axioms. More importantly, we may drop the equality axioms from the clause set, thus eliminating
their numerous consequences from the search space.

We have discovered two rules of inference that play a role for an arbitrary relation analogous
to that played by paramodulation and E-resolution for the equality relation. These rules apply to
sentences employing a full set of logical connectives; they need not be in the clause form required
by traditional resolution theorem provers. We intend both these rules to be incorporated into
theorem provers for program synthesis.

Employing the new special-relations rules yields the same benefits for an arbitrary relation
as using paramodulation and E-resolution yields for equality: proofs become shorter and more
comprehensible and the search space becomes sparser.

_06 Binary-Search Algorithms ([MW2])

Some of the most efficient numerical algorithms rely on a binary-search strategy; according to
this strategy, the interval in which the desired output is sought is divided roughly in half at each
iteration. This technique is so useful that some authors (e.g., Dershowitz and Manna, and Smith
) have proposed that a general binary-search paradigm or schema be built into program synthesis
systems and then specialized as required for particular appiications. F I

It is certainly valuable to store such schemata if they are of general application and difficult to
discover. This approach, however, leaves open tl- qlipstiont of how schemata are discovered in the -1

first place. We have found that the concept of binary search appears quite naturally and easily in _ -
the derivations of some numerical programs. The concept arises as the result of a single resolution Codes

,/or
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step, between a goal and itself, using our deductive-synthesis techniques (Manna and Waldinger
[801).

The programs we have produced in this way (e.g., real-number quotient and square root,
integer quotient and square root, and array searching) are quite simple and reasonably efficient,
but are bizarre in appearance and different fr'om what we would have constructed by informal
means. For example, we have developed by our synthesis techniques the following real-number
square-root program sqrt(r,,&):

if max(r, 1) < c
then 0

sqrt(r, c) else if [sqrt(r, 2c) + (12 < r
then sqrt(r, 2c) + c
else sqrt(r, 2c).

The program tests if the error tolerance c is sufficiently large; if so, 0 is a close enough approxi-
mation. Otherwise, the program finds recursively an approximation within 2c less than the exact
square root of r. It then tries to refine this estimate, increasing it by f if the exact square root is
large enough and leaving it the same otherwise.

This program was surprising to us in that it doubles a number rather than halving it as the
classical binary-search program does. Nevertheless, if the repeated occurrences of the recursive call
sqrt(r,2c) are combined by common-subexpression elimination, this program is as efficrent as the
familiar one and somewhat simpler.

- A Theory of Plans ([MW3][MW4))

Problems in commonsense and robot planning were approached by methods adapted from
our program-synthesis research; planning is regarded as an application of automated deduction.
To support this approach, we introduced a variant of situational logic (Manna and Waldinger
[81]), called plan theory, in which plans are explicit objects. A machine-oriented deductive-tableau
inference system is adapted to plan theory. Equations and equivalences of the theory are built into
a unification algorithm for the system. Frame axioms are built into the resolution rule.

Special attention was paid to the derivation of conditional and recursive plans. Inductive
proofs of theorems for even the simplest planning problems, such as clearing a block, have been
found to require challenging generalizations.

*"'Deductive Synthesis of Dataflow Networks ([JMW])

The synthesis of concurrent programs is much more complicated than the synthesis of se-
quential programs. In general, a concurrent program does not have a single input value and a
single output value, but receives several inputs and sends several outputs during its execution. If
we consider sequences of input and output values, then we can specify a concurrent program by
giving a relation between the sequence of input values and the sequence of output values. This
specification method is natural especially for networks of deterministic processes that communicate
asynchronously by sending messages over buffered channels. Deterministic data flow networks fall
into this category.

We have developed a method for the deductive synthesis of deterministic dataflow networks,
which are specified by a relation between sequences of input values and sequences of output values.

i:



Our synthesis method consists of two stages. The first stage, the deductive-synthesis stage.
starts from a specification of the network. Using the deductive-tableau techniques of Manna and
Waldinger [80), a system of recursive equations is synthesized. This system can be regarded as
an applicative program that satisfies the specification for the network, but it does not directly

3 represent any structure or parallelism of a network. In the second stage, the system of recursive
equations is transformed into a dataflow network.

Logic: The Calculus of Computer Science, [ W5])

The research papers in which we have presented tle deductive approach to program synthesis
has been addressed to the usual academic readers of the scholarly journals. In an effort to make this
work accessible to a wider audience, including computer science undergraduates and programmers,
we have developed a more elementary treatment in the form of a two-volume book, The Logical
Basis for Computer Programming, Addison-Wesley (Manna and Waldinger [85c]).

This book requires no computer programming and no mathematics other than an intuitive
understanding of sets, relations, functions, and numbers; the level of exposition is elementary.
Nevertheless, the text presents some novel research results, including

* theories of strings, trees, lists, finite sets and bags, which are particularly well suited to
theorem-proving and program-synthesis applications;

" formalizations of parsing, infinite sequences, expressions, substitutions, and unification;

" a nonclausal version of skolemization;

" a treatment of mathematical induction in the deductive-tableau framework.

*4 Verification of Concurrent Programs ([MP1])

We studied in detail the proof methodolo es for verifying temporal properties of concurrent
programs. Corresponding to the main classiication of temporal properties into the classes of safety
and liveness properties, appropriate proof principles were presented for each of the classes.

We developed proof principles for the establishment of safety properties. We showed that
essentially there is only one such principle for safety proofs, the invariance principle, which is a
generalization of the method of intermediate assertions. We also indicated special cases under
which these assertions can be found algorithmically.

The proof principle that we developed for liveness properties is based on the notion of well-
founded descent of ranking functions. However, because of the nondeterminancy inherent in concur-
rent computations, the well-founded principle must be modified in a way that is strongly dependent
on the notion of fairness that is assumed in the computation. Consequently, three versions of the
well-founded principle were presented, each corresponding to a different definition of fairness.

_w A Resolution Approach to Temporal Proofs Q([A[AM1][AM2])

A novel proof system for temporal logic was developed. The system is based on the classi-
cal non-clausal resolution method, and involves a special treatment of quantifiers and temporal
operators.

Soundness and completeness issues of resolution and other related systems were investigated.
While no effective proof method for temporal logic can be complete, we established that a simple
extension of the resolution system is as powerful as Peano Arithmetic.

. m i i -



The itse of temporal logic as a programming language was explored. We suggested that a
specialized tem)oral resolution system could effectively interpret programs written in a rest ricted
version of temporal logic.

We also provided analogous resolution systems for other usefl modal logics, such as certain
modal logics of knowledge and belief.

" Specification and Verification by Predicate Automata MP21)

We examined the possibility of specifying and verifying te:ral properties using an extension
of finit,-st;,te automata, called predicate automata. These automata extend the conventional notion
of automata in three respects. The first extension is that the conditions for transitions between
states can he arbitrary predicates expressed in a first-order language. The second extension is that
these automata inspect infinite input sequences, and hence a more complex acceptance criterion
is needed. The third extension is that non-determinism is interpreted imircrsally, rather than
existentially, as is the case in conventional non-deteirministic finite-state automata. This means
that if the automata can generate several possible runs, in response to a given input, then it is
required that all runs are accepting.

By introducing conventions for representing automata in a structured form, we demonstrated
that specification of temporal properties by automata can become very legible and understandable,
and presents a viable alternative to their formulation in temporal logic.

A single proof rule was presented for proving that a given program satisfies a property speci-
fiable by a predicate automaton. The rule was shown to be sound and relatively complete.

"' A Hierarchy of Temporal Properties i MP31)

We proposed a classification of temporat, operties into a hierarchy which refines the known
safety-itcn.,s classification of properties. The classification is based on the different ways a prop-
erty of finite computations can be extended into a property of infinite computations.

This hierarchy was studied from three different perspectives, which were shown to agree, Re-
spectively, we examined the cases in which the finitary properties, and the infinitary properties
extending them. are unrestricted, specifable by temporal logic, and specifiable by predicate au-
tomata. The unrestricted view leads also to a topological characterization of the hierarchy as
occupying the lowest two levels in the Borel hierarchy.

For properties that are expressible by temporal logic and predicate automata, we provide
a syntactic characterization of the formulae and automata that specify properties of the differ-
ent classes. The temporal logic characterization strongly relies on the use of the past temporal
operators.

Corresponding to each class of properties, we presented a proof principle that is adequate for

proving the validity of properties in that class.

-1 Logic Programming Semantics: Techniques and Applications (Bl]-[B3j .

" , (" rt' i.-,)-V : .-q

It is generally agreed that providing a precise formal semantics for a- ramining language is
helpful in fully understanding the language. This is especially true in the c se of logic-programming-
like languages for wvhich-the underlying logic provides a well-defined but i risufficient semantic basis.
Indeed, iA aCdWition to the usual model-theoretic semantics of the logic, proof-theoretic deduction

5
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plays a crucial role in understanding logic programs. Moreover. for specific implementations of
logic programming, e.g. PROLOG, the notion of deduction stategy is also important.

We provided semantics for two types of logic programming languages and develop applications
of these semantics. First, we propose a semantics of PROLOG programs that we use as the basis of
a proof method for termination properties of PROLOG programs. Second, we turn to the temporal
logic programming language TEMPLOG of Abadi and Manna, develop its declarative semantics,
and then use this semantics to prove a completeness result for a fragment of temporal logic and to
study TEMPLOG's expressiveness.

In our PROLOG semantics, a program is viewed as a function mapping a goal to a finite or
infinite sequence of answer substitutions. The meaning of a program is then given by the least
solution of a system of functional equations associated with the program. These equations are
taken as axioms in a first-order theory in which various program properties, especially termination
or non-termination properties, can be proved. The method extends to PROLOG programs with
extra-logical features such as cut.

For TEMPLOG, we provide two equivalent formulations of the declarative semantics: in terms
of a minimal temporal Herbrand model and in terms of a least fixpoint. Using the least fixpoint
semantics, we are able to prove that TEMPLOG is a fragment of temporal logic that admits a
complete proof system. This semantics also enables us to study TEMPLOG's expressiveness. For
this, we focus on the propositional fragment of TEMPLOG and prove that the expressiveness of
propositional TEMPLOG queries essentially corresponds to that of finite automata. -
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